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ABSTRACT treating the system as consisting of a tree-topology ssbesy

This paper describes a constraint embedding approach for together with additional closure constraint. One such gtaris
handling of local closure constraints in multibody systemainm- the forward dynamics algorithm for closed-chain topologg-s
ics. The approach uses spatial operator techniques to efitei tems that consists of the following steps [4]:

local-loop constraints from a system to effectively coniténto

a tree-topology system. This conversion to a tree-topoligy
lows the direct application of the host of available techugg
including mass matrix factorization and inversion to be ligxb

to the system dynamics. One application is the extensidmeof t
well-known recursiveD (N) forward dynamics for solving the
system dynamics of these systems. The algorithms are espe-
cially applicable to systems where the constraints are oexlfto
small-subgraphs within the system topology. The paperigesv The correction step (2) requires the computation of theatfte

1. ignoring the closure constraints and using @é\) algo-
rithm to solve for the “free” unconstrained accelerationis f
the tree-topology sub-system;

2. using the tree-topology solution to compute a correction
force that enforces the closure-constraints;

3. correcting the unconstrained accelerations with ctimec
accelerations resulting from the correction forces.

background on the spatial operator approach, the exterssfon inertias at the closure nodes, referred to as the operdtpaae
handling embedded constraints, and concludes with exangfle  inertia in order to obtain the correction forces.
such constraints. The above algorithm for closed-chain topologies has some

significant drawbacks when compared with @eN) algorithms

for tree-topology systems. These include the use of a non-
1 INTRODUCTION minimal set of generalized coordinates and velocities,nied

There has been a considerable amount of research over thefor a differential-algebraic solver and/or constrainfdtaation

years on the development of tBpatial Operator Algebraneth- technique for propagating the equations of motion, and thiéi-m
ods [1, 2] for the analysis of multibody system dynamics. Key pass algorithm described above. Another major consequence
insights that have been developed included analyticahigcles from the use of a non-minimal set of generalized velocities t
for the factorization and inversion of the mass matrix feetr the notion of a mass-matrix is no longer directly applicaible
topology systems. From these results followed the welkkmo closed-chain systems, and thus we are unable to take much ad-
O(N) forward dynamics algorithms for tree-topology multibody vantage of the spatial operator mass-matrix factorizaiwhin-

systems [1-3]. version techniques any more. Our goal in this paper is tarefo
Researchers have been able to exploit techniques developednulate the equations of motion for closed-chain systemséo-o
for tree-topology systems to closed-chain topology systém come these limitations and recast them into a form that rsov
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all the benefits of a tree-topology formulation. This recagsex-
tends the direct applicability of the large range spatiadrafor
results, algorithms and techniques developed for treeldgyy
systems to systems with closed-chain topology. This rekear
is inspired by theRecursive Coordinate Reduction (RCjo-
rithm [5] that described a way to directly absorb closure-con
straints into theO(N) forward dynamics algorithms bu adding
additional phantom-bodies to the system.

The reformulation described in this paper is most beneficial
for the class of multibody systems where the closure-caimt
are local, i.e., where the the constraints are confined tdl,sma
connected sub-groups of bodies within the system. Impbrtan
examples of such local closure-constraints are four-b&afjes,
geared motors, differential suspensions etc. elementiné

number of degrees-of-freedom for the manipulatdNisThere
are two joints attached to tHé™ link. A coordinate frameD;,
is attached to the inboard joint, and another fra@]‘gl is at-
tached to the outboard joint. Frarfg, is also the body frame
for the k™ link. The k™ joint connects thék + 1)t andkth
links, and its motion is defined as the motion of fra@g with
respect to fram@{. When applicable, the free-space motion
of a manipulator is modeled by attaching a 6 degree-of-fseed
joint between the base link and the inertial frame about tvthie
free-space motion occurs. However, in this paper, withoss |
of generality and for the sake of notational simplicity, jalhts
are assumed to be single rotational degree-of-freedonsjaiith
the k'™ joint coordinate given by (k). Extension to joints with
more rotational and translational degrees-of-freedortrasght-

multibody system. This paper shows how one can embed theseforward [4].

closure-constraints directly into the system dynamicseffet-
tively replace the sub-group of bodies with virtual aggtega
bodies. This step transforms the original closed-chaimltop
ogy system into a tree-topology one with the closure body sub
groups replaced by aggregated bodies. The transformation t
tree-topology systems allows us to apply all available héphes

for tree-topology systems to the new system’s dynamicsidicl
ing the extension of the tree-topolo@/(N) forward dynamics
algorithm. The structural impact on the class of recursiye d
namics algorithms is minimal in that the changes are limited

the steps encountered when crossing an aggregated body in th

system. While the results here are quite general, we belate
this approach is especially effective for “local” loops &@nthe
aggregation step is typically simple for these cases.

We begin with a brief overview of the spatial operator alge-
bra approach to setting up the equations of motion for a multi
body system, followed by the steps leading to the derivation
O(N) forward-dynamics algorithms for tree-topology systems.

We then move on to the case of systems with local closure con-

straints and describe the embedding technique. We derid& mo

fications for theD (N) algorithm needed to handle the embedded
constraints. We conclude with specific examples of embepdin
local closure-constraints.

2 OVERVIEW OF SPATIAL OPERATORS FOR SERIAL

CHAIN SYSTEMS

The aim of this section is to briefly summarize the essen-
tial ideas underlying spatial operators leading up to thetde-
Euler Operator Factorizatioh((0) = HdMp*H* of the ma-
nipulator mass matrix. While this is done here for a serialich
manipulator, the factorization results apply to more gahaass
of complex joint-connected mechanical systems, includieg
configurations with flexible links and joints [6].

Consider a serial manipulator witki rigid links. The links

The transformation operatdr(k,k — 1) between théd, 1
andOy frames is

blkk—1) <13 1(k,k1)> I
0 Iz

wherel(k,k — 1) is the vector from framéy to frameQO 1),

andl(k, k—1) € R3<3is the skew—symmetric matrix associated
with the cross-product operation.

The spatial velocity of th&'" body frameQ, is V(k) =
[w*(k),v*(k)]* € R®, wherew (k) andv(k) are the angular and
linear velocities ofdy. With h(k) € R® denoting thekt™ joint
axis vectorH (k) = [h*(k),0] € R x R® denotes the joint map
matrix for the joint, and the relative spatial velocity assahe
kth joint is H*(k)0(k). The spatial force of interactiof(k)
across thé&!™ joint is f(k)= [N* (k),F* (k)]* € R®, whereN (k)
andF(k) are the momentand force components respectively. The
6 x 6 spatial inertia matridl (k) of thekt™ link in the coordinate
frameQy is

wherem(k) is the massp(k)e R3 is the vector fromQy to

are numbered in increasing order from tip to base. The outer- thek™ link center of mass, angg(k)eR3X3 is the rotational

most link is link 1, and the inner-most link is lifk. The overall

inertia of thek'™ link aboutQy. I3 is the 3x 3 unit matrix.
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The recursive Newton—Euler equations of motion are [2,7]

VIN+1)=0; aN+1)=0
fork = N---1
V(k) = ¢*(k+1,k)V(k+1)+H*(k)O(k)
a(k) = ¢*(k+1,k)ax(k+1)+H* (k)0 (k) + a(k)
end loop
1)
f(0)=0
fork =1---N
f(k) = ¢k, k—Df(k—1)+M(k) (k) + b(k)
T(k) = H(k)f(k)
end loop

whereT (k) is the applied moment at joitkt The nonlinear, ve-

locity dependent terms(k) andb(k) are respectively the Corio-

lis acceleration and the gyroscopic force terms forkhelink.
The “stacked” notatio@=col {e(k)} e RN is used to sim-

plify the above recursive Newton-Euler equations. Thisanot
tion [8] eliminates the argumenksassociated with the individ-
ual links by defining composite vectors, suchéasvhich apply
to the entire manipulator system. We define

‘.T:col{‘.T(k)} e RN
f=rcol{ f(k)} € R®N
a=col{a(k)} e R®N

In this notation, the equations of motion are [2, 9]:

c R6N

b — col b(k)} € RN

V=col{V(k)} e RN
o =col{ a(k)

V=¢*H*0; a=¢*[H*O+d (2)
f=¢pMax+b; T=Hf=MO+C (3)
where the mass matrix M(0) = HIMOH™;

€(0,0)=HpMd*a+ble RN is the Coriolis term;
H = diag{H(k)} c RNXGN; M = dlag{M(k)} c RBNXBN;

e e (@)

with ¢(1,j) = d(i,1—1)--- d(j +1,j) fori > j. The shift opera-
tor €4 € R¥N*®N is defined as

Using spatial operators one can obtain operator factoriza-
tions of the mass matrix and its inverse as follows:

M=HdM¢p*H*
= [I+HOK] DI+ HpK]*
1+HOX] t=1—-HpX
ML =[I—HYX]*D I — HYK]

(6)

These identifies have been used extensively [1,2,8-13], to
develop a variety of spatially recursive algorithms forvard
dynamics, for both rigid and flexible multi-body systems of a
bitrarily specified topologies, as well as closed-form giticél
expressions for the inverse of the mass matrix. The spatial o
erators\y, D correspond to a suitably defined spatially recur-
sive Kalman filter, with the spatial operatéi representing the
Kalman gain for this filter. We also refer to these operator®
andX as”articulated” quantities, because of their relatiopgbi
the articulated inertias first introduced by [3].

The mass matrix factoil + HpX] is a square, invertible
matrix and so is its inversé — HX].

3 O(N) FORWARD DYNAMICS

Using the expression for the mass matrix inverse in Eq. (6),
and some additional spatial operator identities, it haslseewn
that [1]

=M HT—0)=[IT—HYX]*D I -HPYK](T—C) (7)
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This expression can be broken into the following sequence of tors either. Itillustrates the ease with which the high leyeera-

intermediate quantities:

3 = V(KT+Pa+b)

€ = T—Hs =T —HWb(KT+ Pa+b)

v Dle =D YT —HY(KT+ Pa+b)]

a= YHv+a) =9p*HD UYT—HP(KT+Pa+b)]+a)

0= ~v—K*a« = [I—HPXK*D T —Hy(KT
+Pa+b)]—K*P*a

(8)
These operator expressions can be converted into recersive
putational algorithms without requiring the explicit coutation
of the component operators. The resulti@g¢N) forward dy-
namics procedure is as follows:

P(0)=0, 30)=0, T(0)=0, T(0)=0
fork =1---N
Pk, k—1) = d(k,k—1)T(k—1)
3(k) =P (k,k—1)3(k—1) +P(k)a(k) + b(k)
+K(k,k—1)T(k—1)
P(k) =P(k, k—1)P(k—Lp* (k, k—1) + M(k)
D(k) = H(k)P(k)H" (k)
§(k) =P(KH*(K)D (k)
K(k+1,k) = p(k+1,k)G(k)
T(k) =T—G(k)H(k)
e(k) = T(k) — H(k)3(k)
v(k) =D (k)e(k)
end loop
)
an+1)=0
fork = N---1
B(k) =v(k) —K*(k+1,k)oc(k+1)
a(k) =*(k+1,k)o(k+1) + H* (k)v(k) +a(k)
end loop

This algorithm includes the recursive steps for the computa
tion of the®(.)’s andj(.). The fact that the computational cost
of this algorithm iSO (N) follows from the fact that the computa-
tional cost of each of the steps in the above algorithm is efdfix
size, and each of these steps is carriedXutmes during the
course of the algorithm.

As we see here, this forward dynamics algorithm does not
require the explicit computation of eithaf or C. Indeed it did
not require the explicit computation of any of the spatiati@p

tor level manipulations can be used to establish key idegstind
results, and at a later stage when the time for computatitsesa
these results can be mapped into highly efficient compurtatio
algorithms.

4 LOCAL CONSTRAINT EMBEDDING
4.1 Constraint Sub-Groups

Let us assume that within the multibody system, we have a a
sub-group of bodies with some closure constraints among.the
One consequence of the constraints is that the effectiveedeg
of freedom associated with the bodies in this sub-groupss le
than the sum total of the hinge degrees of freedom . Examples o
such local loops include constraints associated with g
tors, 4-bar linkages/wishbone suspensions, differengid. The
presence of the local loops implies that the system is nodobag
tree-topology system.

Our first step is to isolate this sub-group in order to clearly
define its internal kinematics/dynamics relationshipsyal as
its coupling to the rest of the system. For the purpose of €xpo
sition, we assume that the links have been numbered so that th
indices for the links in the sub-group range from fromo j with
i>j. Assume that thé'" link in the sub-group is the child of
the (i+ 1)t" link and the(j — 1)t" link is the child of thejt™
link in the sub-group.

Define the stacked spatial velocities vectdtgs

col{V(i),---V(j)}, and the stacked generalized velocities vec-
000 }
vectors of the fully and® vectors corresponding to only the links
in the sub-group. Then we have,

tor fg = col{é(i),-- . TheVs andfg vectors are sub-

Ve =€} Ve +Es™(i+1)+H s 0s

VGi—-1)=¢*(,j - 1)Bs* Vs +H*(j—1)0(G—1)  (10)

Here& _ is the block element of 4, corresponding to just the
bodies in the sub-groufts andBg are also sub-blocks @y,
that denote the coupling of the sub-group to links1 andj —
respectively. In essence, Eq. (10) is a block-partitioresdate-
ment of the system level velocity relationships. The firataeq
tion defines how the parent body’s velocity couples into thte s
group while the second one defines how the sub-groups veloc-
ities couple into the outboard bodies. Note that the loop con
straint imposes internal consistency conditions on theetds

of Vg, and these conditions are met by admissthiegeneral-
ized velocities that are consistent with the constraintsie B
the internal-dependency, there are multiple (and equallid)y
options for definingi’gbé5
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Continuing on, we now define sub-group rigid body trans-
formation operatoth g analogous to Eq. (4) as

A _
be = (I-Epg) " (11)
With this we can rewrite the first equation in Eq. (10) as
10 * * . * * N
Ve = OY S V(1+1)+¢6H s0s (12)

Note thatd g is a sub-block of the fuld for the sub-graph links.

In effect, we are partitioning all the spatial operators teate
single block entries to represent the sub-group. Indeed;ame
now think of the sub-group as aggregate link with asso-
ciated link transformation matrip 5 Es™ and joint map matrix
dsH*s. The aggregate link for the sub-graph then has spatial
velocity defined byVe and its associated generalized velocity
coordinates ar®s. Assuming that the topology of the system
external to the sub-group is a tree, the new system with the ag
gregate body has been transformed into a form resemblirga tr
topology structure.

4.2 Embedding the sub-group constraints

Having seen how to decompose and isolate sub-groups of
bodies as aggregate bodies we now turn to the subject of han-

dling closure-constraints within these sub-groups. Weriles
here the process of embedding these constraints diretblytie

dynamics model so that we can complete the transformation to

the simpler tree topology model. However this proxy link @& n
longer a regular link, but insteadaggregate link responsible
for appropriately handling the contribution of the sub+gyaf
links in the system dynamics. Note, that the new model is an
exact replacement for the original model and no approxionati
are involved.

Due to the internal constraints within the sub-group, nbt al
elements 0B g are independent. Hence, there exists a (configu-
ration dependent) mappiigs such that

8s =Xsfrs = H'e0s = H'reOre

where H*RG é H*GXG (13)

In the abovefre denotes the truly independent generalized ve-
locity sub-vector obBg. We will later explore how one might go
about computingXs for sub-graphs.

Using Eq. (13) in Eq. (12) we have the following new ve-
locity transformation relationship for the sub-group innts of

independent generalized velocities:

11,12,13

Ve = dsEs V(i+ 1)+ dsH ReOre
=¢sEs™V(i+1) +HggOre (14)
whereHy s is defined as
* A * *
HRG = d)GH RS (15)

With this new-relationship, we can re-express all of theeys
level spatial operators into new versions where the blooksee
sponding to aggregate body links are treated as coming from a
single link.

Analogous expressions at the acceleration level are de-
scribed below. First note that

b = Xebre +XsOrs (16)

Hence the acceleration level expressions take the form:

xe =& o e + Es ali+1) +H*'s0s +as
— ag =P5Es a(i+ 1)+ dEH s0s + dsas
= ¢5Es*ali+1) + Hiysbre + disae
+d5H s XeOre

=p5Es ali+1) + HysOre +as (17)

where

A * * N\ .
a5 = dslas +H* s Xs0rs) (18)

Note that the structure of Eq. (14) and Eq. (17) resemblestbbs
the velocity and acceleration relations in Eq. (1) for ttepelogy
systems. We can continue on to transform the spatial foree ex
pressions as well. For this we will need the spatial inedran

M, for the aggregate bodyM is simply the sub-block oM g
corresponding to the bodies sub-group for the aggregatg. bod
We skip the details since the development is straightfadwar

5 FORWARD DYNAMICS WITH CONSTRAINT EM-
BEDDING
With these changes, we once again have a new reduced,
mass matrix for the system corresponding to just the indepen
dent generalized velocities and forces. The importanttgoin
note is that a consequence of the embedding has been that the
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system and the mass matrix continue to have the familiacstru  bedded constraints. First the step from badgly- 1) to theit™
ture for tree-topology systems. As a consequence, we caatep aggregate body:
the steps leading to the Innovations Factorization andr&mve
of the mass matrix for the reduced mass matrix to obtain the co
responding operator factors and inverse operator expresgr T Ay s . .
the reduced mass matrix. Note however, that the a conseguenc 3 -1 =5l 1')%'—9(1 +1?€(1 b ,
of the embedding has been that some of the blocks in the new op- 36 =Bed(j,i—1);" (i—1)+bs+Peag
erators are much larger than normal since they encompass ter es =T(1) —Hrsis
for the full sub-group. The large the sub-groups, the lagger -1
these block-elements. ve SRS (1)
With this setup, all of the inverse and forward dynamics re-
sults continue to apply for the new operators defined by embed
ding the constraints. We now look in more detail at DEN) The recursion step from thig¢" body to body(j + 1) is as fol-
forward dynamics algorithm in Eq. (9) to our new reformuthte  lows:
system with aggregate links. The articulated body ineg@ur-
sive forward dynamics algorithm for the new embedded system
has the form:
36 =36+ 9s¢€s
3(i+1) =Esdess +b(i+1) +PA+1)ali+1)

PHi—1)=7(G-1)PG—1
(-1 =7G-1P(G-1) e(i+1)=TA+1)—H{i+1)3(i+1)

Ps =Bsd(j,i— VP (-1)0"(,j —1)Be" +Ms

De = HpePoHie v(i+1) =D i+ 1)e(i+1) (22)
Se =PeHrsDe"
Te = JeHre The base-to-tip accelerations sweeps steps also aretkdtefel-
in =Ps—15Ps lows. First the steps from body+ 1) to theit™ aggregate body:
Pli+1) =EsdsPEdsEs +M(i+1) (19)
Note thatDg can be re-expressed as a's =dpsEsali+1)
Ore =ve —Se' o' s
De =Xs"(HepsPsdsH s )Xs = Xe " MeXs ag =o' g +HisOrs + a5 (23)
where Mg 2 HedsPsdsH s (20)

The step from théth aggregate body to body — 1) is as fol-

The inner termMg has the structure of the mass matrix of the |
Oows:

sub-group’s tree. The one major difference from the true sub
tree’s mass matrix is that the central body spatial inepierator
is Pg instead of the normalls term. However, the structural
properties of a tree-topology continue to hold as do resuith at(i—1)=Bs*ag
as the composite rigid body decomposition, operator-biamssess o o s Fos
matrix factorization and inversion et@ is the reduced mass 0i-1)=v(i-1)-F (-« ,,(1_ b
matrix for the sub-tree projected down down to the independe x(i-1)=oa"(i-1)+H"(1-1)8(i—1) +a(i—1) (24)
degrees of freedom for the sub-tree. In this sub-tree,(fink1)
is serves as the “root” inertial frame, and the sub-grap hdsodi-
rectly attached to this link are independent base-bodiaslad
to the inertial frame. Due to the implicit cuts, the sub-grgou 9-1 Alternative form of forward dynamics steps
multi-body system has a tree-topology structure. Alsoe rlo&t Defining
the mass of the link includes the articulated body contribution
from the sub-tree rooted at link- 1.

The accompanying vector recursions for the articulateg/bod N
inertia algorithm in Eq. (9) take the following form for thene Ps = dsPsobs, (25)
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we can write a slightly rearranged version of Eq. (19) as

PHG-1)=7G-1P(-1)

Ps=de [Bed(i,i—1P"(-1)¢"(,j —1)Bs" + Ms] ds

(= dePsds)
De =HrePsH"re
Se =PsH'ReDg' (= beFe)
Ts =9sHre (= deteds )
EGZEG—IGEG (= d)GfP d)e)

Pi+1)=EsgP sEs*+M(i+1) (26)

The above corresponds to the following alternative definiis
of the sub-graph’s spatial velocity:

1

* 1 *
Ve =dsVe or Vg = (I-E4)Ve (27)

Form Eq. (12) it follows then that the velocity equationséthve
form

Ve =Es*V(i+1) +H*rs0re

V(i-1)=¢"(,j—1)Bs" dsVes +H (—1)0(G—1) (28)

while the corresponding acceleration equations have time fo

Ag = EG*(X(i—I- 1) —I-H*Gég +ag +H*6X6éR6
=Es*a(i+1)+H'rsbres +a's (29)
Also define
N N
i = bese and 3C = deis (30)
Then from Eqg. (21) we have
3 = Pe [Bed(j,i—1)5" (i—1) +bs + Psag]
es =T(1) —Hrejg
Ve :Dé]'GG (31)

The recursion step from thé" body to body(j + 1) is now as
follows:

Zlg s +26€6

3(i+1) =Egl +b(i+ 1) +P(A+1a(i+1)  (32)

The base-to-tip accelerations sweeps steps also aredkdiefel-
lows. First the steps from body+ 1) to theit™ aggregate body:

Ore =ve — G Es ali+1) (33)

The step from thét" aggregate body to body — 1) is as fol-
lows:

OC+(i—1) :'BG*OCG
0(i—1)=v(i—-1)—G*(i—-Da"(i—1)
afi—1)=at(i—1)+H"1—-1)0(i—1)+a(i—1) (34)

5.2 General expression for Xg

Now we look at the problem of obtaining expressions for
Xs. When the constraint is directly among the joint angles, as
for the geared link/motor cas&g is straightforward to write.
When the constraint is a closure constraint as for the faur-b
linkage case, the constraint can typically be expressed as:

ol
Yog = [Y1, Y2l =0 (35)
Ors

In the above, the above partition is such thats square and full
rank and so

*YI 1Y2

616 = —YlezéRg = Xg = [ I

] (36)

In the aboveY can be a constraint directly on the generalized
velocities, or an indirect constraint on the link spatidbegties.

We nextlook into computinis. required by Eq. (18). First
we note that

ay. av;?t
Yivpt=1 — d—tlYl +Vi—g- =0
dv;?t 71le .
=— 7
m Yil==yr (37)
. A g
Hence, withZ = Y; 7Y,
dz d\ql ,dYs 37 4dYi, _,dY;
at  ar 2T Tar v Ty
dy, av.
vl 2 1
! {dt dt Z]
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Thus 6 EXAMPLES OF CONSTRAINT EMBEDDING

. ) ) ) Geared motors
% lz] [Yll [YaZ—Yo] ] [Yl VXg
6 pr— = pr—

(38) For geared motors, we have the motor mounted on an in-
board link driving the outer link that creates a closureplde-
tween the 3 bodies. For this sub-group we have:

Therefore

06 = Omer(K), Otk (K], Ore = Oinik(k)
Xe =Iug(k), %, Bs=PBgl(j), Hre =Hg"(i)
€¢6 =0, ¢s=1I, Eg=Ag(i+1,i) (42)

S _ *YleXGGRG _ *YleéG
XeOre = 0 = 0

1 (39)

5.3 Computing Y

So far we have made no assumptions about the nature of
We look now at computiny for the two predominantcases. The g this case, sinads = I, we can stop at Eq. (19) since the fol-
first more straightforward case is where there is an dirdterfo lowing equations become degenerately trivial. Using thinide

linear) algebraic relationship between the constrainetegs- tions in Eq. (42) it can be verified that the expressions waiabt
ized velocities. For this caseis simply the product of gradient  agree with those from earlier in this chapter.

of this relationship with respect to to the sub-graph’s galieed
coordinate® s and theds sub-graph’s generalized velocities.  Planar 4-bar linkage system (terminal cut)
Geared joints are an example of this type of constraint wtiere
gear ratio defines the constraint relationship.

The second situation is when the constraint consists of a al-
gebraic constraint on the relative velocities of a pair ojgbtal
points in the sub-graph. Denoting these points asdp, such a
constraint can be expressed as

Assume that the linkt andc are directly connected to link
(i4+1). Link b is the child of linka and its other end is connected
to the end of linkc through a hinge. Link — 1 is connected via
a hinge to linkb. The sub-graph consists of links b andc.
We make a cut at the hinge joining linksandc to convert the
sub-graph into a tree-topology system.

0=A(Vo—Vp)=A(do—3p)0s

o1
=A [301_3131; 302_3132] [ © ‘| (40) 0 0 0
Ore Es =000 ¢(i+1,a)l, €ps=|d(be) 0 0
0 $(a,b) O
whered,, g, denote Jacobians relating the sub-graph’s general- I 0 0
ized velocities to the spatial velocities at the poimtndp, and b — (b.c) I 0
Jo1 etc. represents sub-blocks within these Jacobians. Frem th &= | blbc
above relationship we can identi¥ andY, as dla,c) ¢dlab) I
H*re = [X(c), X(b), H(a)]*, Bs"=I0, L, O] (43)
Y1=A(Jo1—3dp1) and Yo=A(Jo2—3p2) (41)
Now lets examine how to derive an expressionsy'fplandyz_ In the aboveX(c) andX(b) are the effective joint map matrices
From the chain rule, these derivatives requireand the time for the b and c matrices that satisfy the closed-loop wishbone
derivatives of thgl,1 etc. blocks. The expression faris usually constraint.

straightforward to obtain from the nature of the constrai®b
lets focus on the time derivative of the Jacobian blocks. eCas
in point, theit" column ofJ,1 is of the form¢* (04, 0)H* (1), Assume that the linki andc are directly connected to link
whereQ; denotes the frame at thié" hinge in8g with H* (i) (i141). Link b is the child of linka and its other end is connected
the corresponding joint map matrix at the hinge. The dexigat to the end of linkc through a hinge. Link — 1 is connected via
involves the relative linear and angular velocityooivith respect a hinge to linkb. The sub-graph consists of links b andc.

to toO; and is an easy expression to derive. We make a cut at the hinge joining linksandc to convert the

Planar 4-bar linkage system (internal cut)
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sub-graph into a tree-topology system.

(4]

0 0 0
Ee =[b(i+1.c), 0, ¢(i+La)l, €pg=|0 O O [5]
0 ¢(a,b) O
I 0 0
q)G(o I 0], H*re = [X(c), X(b), H(a)]* 6]
0 ¢(ab) I
Bs* =10, 1,, Q] (44)

In the aboveX(c) andX(b) are the effective joint map matrices
for the b andc matrices that satisfy the closed-loop wishbone
constraint.

(8]

7 CONCLUDING REMARKS

This paper has described a constraint embedding approach
for the handling of local closure constraints in multibodss
tem dynamics. The approach uses spatial operator tectmique
eliminate local-loop constraints from the system and éffety
convert the system into tree-topology systems. Once ctetier
the host of techniques available - includi@dN) forward dy- [10]
namics algorithms - are shown to be applicable to such sygstem
Future work will explore the implications of the sub-grougf-d
inition when the system has a density of closely-coupled con
straints. Another issue to be explored in more detail is @@ h
dling of singular configurations and consequent changekeo t
ranks of the constraint matrices.

(9]

[11]

[12]
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